
Visible Analyst Tutorial

 pg.

Entity Relationship and
Data Flow Tutorial

Visible Systems Corporation

24 School Street, 2nd floor
Boston, MA 02108

617-902-0767

https://www.visiblesystemscorp.com

Email: contact@visiblesystemscorp.com

https://www.visiblesystemscorp.com/

Visible Analyst Tutorial

2

Entity Relationship Diagrams

 pg.

Enterprise-wide Analysis, Design
and Planning for Improvement.

Entity Relationship Diagrams

4

Information in this document is subject to change without notice and does not represent a commitment on the part of
Visible Systems Corporation. The software described in this document is furnished under a license agreement or
non-disclosure agreement. The software may be used or copied only in accordance with the terms of this agreement.
It is against the law to copy the software onto any medium except as specifically allowed in the license or non-
disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or otherwise,
including photocopying, reprinting, or recording, for any purpose without the express written permission of Visible
Systems Corporation. Visible Systems Corporation makes no representations or warranties with respect to the
contents or use of this manual, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Names, dates, and information used in examples in this manual are fictitious and
only for examples.

Copyright 2008 – 2020 by Visible Systems Corporation, All rights

reserved. Printed and bound in the United States of America.

This manual was prepared using Microsoft Word for Windows.

Visible Analyst
Tutorial on Structured Methods, Repository Management and The Zachman Framework

Visible Analyst® is a registered trademark of Visible Systems Corporation.

The Zachman Framework illustration on the cover page of this tutorial was printed and used with the permission of
the Intervista Institute © 2004 (www.intervista-institute.com). Microsoft and Windows are registered trademarks of
Microsoft Corporation. Other product and company names are either trademarks or registered trademarks of their
respective owners.

http://www.intervista-institute.com/

Entity Relationship Diagrams

 pg.

Lesson

Entity Relationship Diagrams
OVERVIEW
This data modeling technique provides a precise method for detailing and illuminating the
interrelationships of the data used by a system. You can depict the ―entities‖ (see definition
below) in the data you are modeling and the relationships between them by drawing them
onto an entity relationship diagram (ERD). The data model (ERD) shows the major data
objects of an application and how they fit together using the relationships. You can define the
primary keys for the data entities and the composition of the data attributes of the entities in
the Visible Analyst repository. (Defining primary keys and adding data attributes are
explained in Lesson 16, Working with the Repository Functions.) The defined components
can then be displayed on your ERD diagram by selecting these options from the View menu.

A diagram containing a picture of all or a subset of your data is called a ―view.‖ Each view
can show an arbitrarily large or small part of your data model. You can show multiple views
of your data model by including different combinations of entities and relationships on
various diagrams. However, the entire data model, including the data elements composing
each entity, is retained in the repository and can be accessed by creating a global view of the
data model. This feature is explained in this lesson.

Definitions
The important diagram constructs in entity relationship data modeling include:

Entity The entity (or, more properly, the entity type) is nothing more than

a real-world object that you want to describe. The most generic
type of entity is really a fundamental or independent entity but is
usually simply called an entity. It is composed of data elements
(also called attributes), and you can describe these in the entity’s
repository composition field. A fundamental entity is an object or
event. It is represented on an entity relationship diagram as a
rectangle and is accessed by the first symbol button on the control
bar.

Entity Relationship Diagrams

6

Associative Entity Another type is the associative entity (sometimes called a
junction, intersection or concatenated entity, a gerund or a
correlation table). This is basically a relationship (see below) about
which you want to store information. It can only exist between two
other entities that participate in a many-to-many relationship. For
example, the relationship between a customer and a product
produces as a by-product the associative entity purchase order. A
purchase order entity would not exist without the relationship
between the other two entities. An associative entity is represented
as a rectangle with straight diagonal lines across each corner. It is
accessed by the second symbol button on the control bar.

Attributive Entity The third entity type is the attributive or dependent entity. This is

used to show data that is wholly dependent upon the existence of a
fundamental entity. It is also used to show repeating subgroups of
data. For example, the associative entity purchase order may have
a dependent attributive entity named shipment showing the full or
partial shipments that fulfill the purchase order. It is represented as
a rectangle with rounded lines across each corner and is accessed
by the last symbol button on the control bar.

Relationship A relationship shows how one entity interacts with or can be

affiliated with another entity. It appears on a diagram as a line
drawn between two entities. Relationship lines ordinarily have two
labels, one for each direction. The relationship lines can have
terminators that show that the entities relate to each other on a one-
to-one, one-to-many, or many-to-many basis (the relationship’s
cardinality), and whether the relationship is optional(may),
mandatory (must) or optional becoming mandatory (will
eventually). There are four line buttons on the control bar. Line
types may be changed after they are drawn on the diagram.

Supertype/Subtypes Specialized subtype entities can be created that are based on a

generalized supertype entity and share common attributes. Only
the attributes unique to the specialized entity need to be listed in
the subtype entity. This is closely related to the object class
inheritance concept. Visible Analyst also provides a detail field
for specifying the exact number of relationships, if known. The
supertype/subtype button is the fifth line button on the control bar.

Cluster A cluster is a collection of entities and the relationships between

them. It is not truly a part of your data model because it carries no
new information. However, it can be very useful when you want to
Show very large data models on a single diagram and still have

Entity Relationship Diagrams

 pg.

it comprehensible. You have the ability to cluster groups of entities
and show these clusters and the relationships between them in
summary fashion on a diagram. This limits the amount of detail on
the diagram so that the larger outlines of what is contained in your
data model are more visible.
The Automated Rapid Business Change (ARBC) editions of
Visible Analyst (the ARBC Corporate Edition, the ARBC
University Edition and the ARBC Student Edition) have the unique
ability to derive Clusters of entities that are needed by each process.
 The last line of each cluster is either an Associative or Intersecting
entity (for a Process), a Subtype entity (for a database) or a 5BNF
Structure [4] entity (for an Expert System Knowledgebase). These
Clusters show the Project Phase Number of each entity.
The Cluster Report is listed in Outline format (similar to a Gantt
Chart) to be used as derived Project Plans for Managers to prioritize
urgent processes for early delivery.

A cluster is created in the repository and entities are added to its
composition field. A cluster view can then be created by Visible
Analyst to display the pseudo-relationships between clusters rather
than real relationships between specific entities. The diagram
Visible Analyst generates is an unstructured diagram, but the
information contained in the diagram pertains to your entity
relationship diagrams. For more information on Clusters, see the
Operation Manual or the online help system.

View Object A view object can be thought of as a derived or virtual table. It is

composed of two components: a list of column names and a select
statement used to filter information from the tables in the view.
For each view, there is one primary select clause and any number
of sub-select and union select clauses. Using the Define View
dialog box, you select the tables and columns and define the join
relationships, clauses and flags to be used by the view. For more
information on view objects, see the Operation Manual or the
online help. (View objects are not available in the Education
Editions of Visible Analyst.)

Entity Relationship Diagrams

8

Figure 7-1 Entity Relationship Diagramming Symbols

Entity Relationship Diagrams

 pg.

Relationship Cardinality
Visible Analyst supports four different relationship cardinality notations: IDEF1X,
Crowsfoot, Arrow, and Bachman. The type of notation you use is up to you, and you select it
when a new project is created. The number of names per relationship line is also your choice.
You can indicate one or two names per relationship. For this lesson, we use the standard
crows foot notation with two names per relationship.

If you select IDEF1X as the relationship cardinality when creating the project, the default
notation is IDEF1X. You would then select crows foot, Arrow or Bachman as an alternate
cardinality notation.

THE EVOLUTION OF DATA MODELING

By Clive Finkelstein [1]

Data Modeling today is an integral part of Systems Development and Maintenance. It was not always so. In
the 1970’s Software Engineering was the preferred development method, and for many organizations it still is.
When we were developing Information Engineering (IE) from 1976-1980 we found in project after project a
high degree of redundant data versions in data bases developed using Software Engineering. These were very
expensive to develop and maintain because any data value changes had to be synchronized across all
redundant data versions. This data redundancy cost large organizations hundreds of millions of dollars of
Systems Development and Systems Maintenance Costs and time.

This also required data maintenance programs to be developed redundantly, which resulted in redundant data
entry, redundant work, redundant staffing, redundant equipment and redundant floor space. This data
redundancy also cost large organizations hundreds of millions of dollars of Annual Operating Costs and time.

In the late 1970’s data modeling methods started to emerge, based on the work by Dr Edgar Codd [2]. This
was due to Normalization following his research work on mathematical set theory.

Normalization ensures that attributes are positioned in tables where they are wholly dependent on the primary
key. It is based on 5 Normalization Rules: First Normal Form (1NF); Second Normal Form (2NF); Third
Normal Form (3NF); Fourth Normal Form (4NF); and Fifth Normal Form (5NF). When correctly applied to
data bases in Third Normal Form (3NF) the number of redundant data versions are reduced. This is a data-
oriented method, while Software Engineering (SE) is process-oriented.

It took many years for the Industry to recognize that data is more stable than processes. Processes are very

[1] Clive Finkelstein is acknowledged World-Wide as the “Father” of Information Engineering (IE) developed by his

Australian Company Information Engineering Services Pty Ltd (IES) and himself in Sydney from 1976-1980.
He is also acknowledged as the “Father” of “Enterprise Engineering” (EE) from 1995-2000, developed by him as an
enhancement to IE to deliver Enterprise Architecture (EA) projects rapidly into production as data bases and
systems in 3-month increments.
From 2014-2020 he developed the Automated Rapid Business Change (ARBC) methods to eliminate Redundant
Data Versions and deliver changed data bases and systems in days or weeks.

 [2] Dr Codd was an IBM Research Fellow in the IBM Research Labs in San Jose. He died in 2003.

Entity Relationship Diagrams

10

volatile and are changed by many factors: management decisions; new technology; and competition.

Data Modeling was applied by data modelers interviewing business experts one-on-one. If a business expert
did not have personal knowledge on how a data element was used; this issue was often left till later to be
resolved. In many cases it was not resolved by anyone but was left to the programmer (who was the least
knowledgeable person to make a decision about the issue). The programmer then locked the decision in
manual code, which was extremely expensive to change.

To avoid this problem, we found that it was more effective to bring all business experts who were
knowledgeable about the data, who together could discuss any data issues and make an informed collective
decision to resolve the issue.

We found in project after project that business experts had difficulty understanding the Normalization Rules,
which were academically worded. We experimented with changing the academic definition of each rule to a
business-oriented definition that explained “how” to apply each rule. This was very successful and enabled the
business experts to participate actively in the data modeling sessions.

We also found that their active participation eliminated redundant data versions that had been missed by 3NF.
We called these business-driven rules “Business Normalization [3]” with 5 Business Normalization Rules:
1BNF; 2BNF; 3BNF; 4BNF; and 5BNF to distinguish from “Traditional Normalization”; 1NF; 2NF; 3NF;
4NF and 5NF.

4BNF identified supertype and subtype entities, for which the business expert data modelers could provide
much data attribute detail. 5BNF was unique, as it identified relationships between occurrences of data entities
using common knowledge, which was expert knowledge. 5BNF resulted in the development of Knowledge
Bases for Expert Systems. 5BNF is very powerful and captures expert knowledge held by a few experienced
business experts that could be shared by all business people in the organization.

I documented Business Normalization in a separate chapter for the book that I was co-authoring with James
Martin in 1980 [4]. This was a critical chapter. It made IE data-oriented and business-driven in contrast to
Software Engineering, which was process- oriented and IT-driven. When the book was published in
November 1981 this critical chapter had been excluded and replaced by a chapter on “Data Design”. This was
a mainframe software package for Normalization developed by James Martin’s company: Data Design Inc.
(which later was renamed Knowledgeware).

When James Martin subsequently published 3 books on Information Engineering in 1986-1988 there was no
mention of Business Normalization and when Knowledgeware subsequently released “Information
Engineering Workbench” (IEW) and later “Application Development Workbench” (ADW), the benefits of
Business Normalization were missing. The books and modelling tools (IEW and ADW) were clearly process-
oriented and IT-driven.
Knowledgeware had obviously used Software Engineering concepts. They did not understand the benefits of
Information Engineering and Business Normalization. The problems and costs of redundant data versions
were still there. However, the industry accepted these books and modeling tools without question because they

[3] See the Reference Textbook: Clive Finkelstein, “Enterprise Architecture for Integration: Rapid Delivery

Methods and Technologies”, Third Edition, IES, (2015). Chapter 6 describes “Business Data Modeling.
Concepts”, while Chapter 9 describes “Business Normalization Concepts”.

[4] James Martin and Clive Finkelstein, “Information Engineering”, Savant Institute, Carnforth, Lancs UK (Nov 1981).

Entity Relationship Diagrams

 pg.

were associated with James Martin’s company [5].

Recognizing Data-Oriented and Process-Oriented Data Models.

 A Data-Oriented, Business-Driven Data Model uses the crows-foot symbol on a relationship line to indicate
many entity occurrences of the entity touched by the crows-foot symbol. One entity occurrence touched by a
relationship line is indicated by the absence of a crows-foot.

A Process-Oriented, IT-Driven Data Model also uses the crows-foot to indicate many occurrences of the
entities touched by the crows-foot symbol. One occurrence touched by a relationship line is indicated by a
vertical bar across the relationship line.

Both of these notations indicate a one-to-many relationship between two entities. To indicate mandatory-one-
to-many, a vertical bar is placed at the “one” end of the relationship line. For the Process-Oriented data model
this means that two vertical bars are used to indicate mandatory-one, while for the data-oriented data model
only one vertical bar is needed to show mandatory-one.

In Summary: if a data model shows two vertical bars for mandatory-one, it is a Process-Oriented data model.
If a data model shows only one vertical bar for mandatory-one, then it is a Data-Oriented data model.

BUSINESS RULES NOTATION
We will now discuss the symbols used on
Relationship lines to represent Business
Rules.

Table 7-1: Using Relationship Symbols
for Data-Oriented, Business-Driven
Business Rules

Symbols in Tables 7-1 and 7-2 are used to
show Business Rules and are referenced
each by a number.
 The crows-foot symbol (2) on the

relationship line indicates many
entity occurrences

 The absence of a crows-foot (1)
indicates one entity occurrence

 One vertical bar (1) on a relationship line indicates one entity occurrence (must have one)
 The vertical bar (4) indicates mandatory-many (must have many)
 The O (5) indicates optional-one (may have one)
 The O indicates optional-becoming mandatory one symbol (7) (will, eventually have one) (Complex

Business Rules)

[5] Tragically, James Martin drowned in 2013, while swimming off his private island in Bermuda.

Entity Relationship Diagrams

12

 The O indicates optional-becoming mandatory many symbol (8) (will, eventually have at least one or
many) Complex Business Rules)

 The recursive symbol (9) indicates a 5BNF entity with expert knowledge between entity occurrences.
 When a symbol is added to a Relationship line, the Business Rule associated with that symbol is

automatically added as the Relationship name. That name can later be changed if a different name is
preferred.

Table 7-2: Using Relationship Symbols for Process-Oriented, IT-Driven Business Rules

Table 7-2 shows symbols used for Process-Oriented Business Rules
 The crows-foot symbol (2) on the relationship line indicates many entity occurrences
 One vertical bar (1) on a relationship line indicates one entity occurrence
 The second vertical bar (3) indicates mandatory-one (must have one)
 The vertical bar (4) indicates mandatory-many (must have many)
 The O (5) indicates optional-one (may have one)
 The O 6 indicates optional-many (may have many)
 The optional-becoming mandatory symbol is not supported (Complex business rules)
 The optional-becoming mandatory symbol is not supported (Complex business rules)
 The recursive symbol (9 indicates a 5BNF entity with expert knowledge between entity occurrences.
 When a symbol is added to a Relationship line, the Business Rule associated with that symbol is

automatically added as the Relationship name. That name can later be changed if a different name is
preferred.

Cluster Analysis and Cluster Report

Visible Analyst has the capability to automate the analysis of an ERD data model to identify the project plans
of sub-projects that can be prioritized and extracted from the data model for early delivery into production.
This analysis is called “Cluster Analysis” and the sub-projects that are identified are called “Clusters”. They
are documented in a “Cluster Report” that is printed in sub-project priority sequence.

The Relationship Symbols that touch each entity are used to apply relevant Business Rules as follows:

Entity Relationship Diagrams

 pg.

• An entity that is touched only by mandatory-one symbols is a “Phase 1) entity. It appears in the
cluster as 1) PROJECT, for example.

• If the other end of the relationship line is a many symbol, that entity is a Phase 2) entity. It appears in
the cluster indented one position to the right as 2) PROJECT BUDGET, for example. [PROJECT
BUDGET will be an Associative (Intersecting) entity and the cluster represents an Activity or a
Process. BUDGET will be another Phase 1) entity. This cluster is shown next.

CLUSTER NAME: PROJECT BUDGET MANAGEMENT ACTIVITY
1) PROJECT
1) BUDGET
 2) PROJECT BUDGET (PROJECT BUDGET MANAGEMENT ACTIVITY)

• If the many symbol touching PROJECT BUDGET is mandatory-many, the cluster is a Reusable

Process and is shown in the cluster with all entities in bold as shown above. The automatically
generated Cluster Name can later be renamed, if preferred.

If another Phase 1 entity (say BUDGET) touches the PROJECT BUDGET entity in an optional-many or
optional-becoming-mandatory-many, the cluster still represents a reusable process. As a general rule of thumb,
any two entities related in mandatory-many to an optional-many or optional-becoming-mandatory-many will
result in at least one Reusable Process.

A cluster that contains supertypes and subtypes will have separate clusters with each subtype entity as the last
line of the cluster (called the “End-Point” entity). These clusters with subtype End Point entities are “data base
clusters”, which take the Cluster Name from these subtype entities. For example:

Supertype: INSTRUCTOR
___________________________|_________
 | | |
Subtypes: PROFESSOR LECTURER TUTOR

The above example of supertype and subtypes will produce 3 data base clusters:
PROFESSOR database; LECTURER database; and TUTOR database.

If an end-point entity is 5BNF the cluster represents an Expert System Knowledgebase. For example:

5BNF Entity: SALESPERSON will appear as the cluster SALESPERSON Expert System Knowledgebase

Milestone Clusters

Some clusters can be very complex, with many entities. If you find any entities touched by one or more
mandatory-one symbol and at least one or more many symbols, that entity is a potential “Milestone” entity.
The large cluster in which it resides can be broken at the Milestone entity into two or more smaller “Milestone
Clusters” for progressive delivery into production as the Milestone databases and systems are completed.

Moving Clusters into a Different Functional Area

The clusters in the Cluster Report represent systems and databases that are likely needed by different

Entity Relationship Diagrams

14

functional areas of the organization. The data model should be displayed (by File < OPEN DIAGRAM).
Click on a Associative (Intersecting) entity to highlight it in a different color. A Select Menu will enable you
to choose “Select Cluster”. All of the other entities in that cluster will be highlighted in the same color.
SChoose the “Move Menu” where all of the entities in the cluster will be listed together with a drop-down list
of functional areas that were defined in the FDD. Choose the functional area that the cluster should be moved
into and click OK. When the data model for that selected functional area is displayed all of the moved entities
in that cluster will be displayed.

Data Model Display Orientation

The data model can be displayed in either a horizontal or vertical orientation.

Horizontal Orientation: All Phase 1 entities are displayed on the top row of the data model diagram; Phase 2
entities are displayed in the second row; Phase 3 entities are displayed in the third row – in a “top-down
orientation. Senior Managers will be interested in the top 2 or 3 rows, while detailed operational entities will
be displayed in the lower rows.

Vertical Orientation: All Phase 1 entities are displayed vertically on the left side of the diagram; Phase 2
entities are displayed 1 column to the right; with the highest phase number displayed on the right hand side of
the diagram. The result is a data model diagram that appears similar to a Pert Chart.

Potential Export Capability to Microsoft Project

The Clusters can potentially be exported to Project Management Software Products such as Microsoft Project.
This is described in Chapter 7 of the Reference Textbook.
BUSINESS NORMALIZATION

We will now discuss Business Normalization Principles, which are used by Data-Oriented Business-Driven
Data Models to eliminate data redundancy. We will use a Purchase Order Form (see below) as a source
document to provide input to Business Normalization in an unnormalized Entity List format.

Entity Relationship Diagrams

 pg.

We will extract the field names in the Purchase Order Form above and write them in Entity List Notation as
shown in the left of this table.
A data entity name is always shown in all capitals.
 For example, a key attribute is shown with a terminating # (hashtag or Pound sign). A primary key is

underlined, while a foreign key is not underlined.
 (A foreign key exists as a primary key in another data entity and links the two entities together.)
 A [secondary key] is written surrounded by square left and right brackets. They are not technically

Entity Relationship Diagrams

16

“keys” (which must be unique) but are more correctly called “selection attributes” as they need not be
unique. A good example is “supplier name”. Secondary keys or “selection attributes” are
implemented as Indexes in a database,

 A (group attribute), such as (supplier address) signifies that it has not yet been decomposed into its
elemental attributes, such as “street number, street name, suburb or town, city, state postal code or
country.

 A {derived attribute} is surrounded by left and right curly braces, such as an “total amount" to signify
that its value is calculated by a formula that is yet to be defined.

 A ((repeating group)) is a number of attributes separated by commas – all surrounded by double left
and right curved brackets to signify that all of the attributes occur multiple times.

 The unnormalized entity at the bottom is used as input to Business Normalization to completely
eliminate all data redundancy.

 DEVELOPING YOUR DATA MODEL
Each entity relationship diagram is complete in and of itself and shows one view of the data
model of your project. (Remember that a view is a portion or subset of your entire data model
represented on a single diagram.) When beginning your data model, you must manually add
new entities and relationships to a view diagram. After this has been done, you can create
additional views by using the File menu View function to select existing entities and
relationships from the repository. Visible Analyst automatically draws the views for you.
Then you can add to or subtract from each view and rearrange it as you wish. Thus you avoid
having to draw portions of your data model repeatedly on different views.

Adding Entities to a View
Since the basic building block of the data model is the entity type (or simply, the entity) and
since relationships cannot exist except to relate already existing entities, you begin by adding
entities to a view.

Set the Zoom Level: 1 From the View menu, select 66% zoom so that you can

see all of your needed workspace.

Create a New Diagram: 2 From the File menu, select New Diagram.

 3 Select the diagram type to be Entity Relationship with
standard drawing method.

 4 Select the Page Size to be Standard.

 5 Click OK.

Add Entities: 6 Click the first symbol icon, the rectangle. This is a
fundamental entity.

Entity Relationship Diagrams

 pg.

7 Place the cursor in the middle of the diagram workspace
and click the left mouse button. An entity is drawn.

8 Name the entity ―Student Driver‖ and click OK.

9 Add another fundamental entity below the first, and name

it ―Driving School.‖

10 Add another fundamental entity below Driving School,
and name it ―Driving Lessons.‖

Figure 7-2 New Entities

Save the Diagram: 11 From the File menu, choose Save and name the diagram
―Driving School View.‖

Changing a Symbol Type
In the diagram we have created, the entity Driving Lessons is actually an attributive entity
because the entity exists solely because it is an attribute of the fundamental entity Driving
School. Since we placed it on the diagram as a fundamental entity, it is necessary to change
the symbol type.

Entity Relationship Diagrams

18

Select Symbol to
Change:

1 Put the cursor in selection mode by clicking the  button
on the control bar.

 2 Click the symbol labeled Driving Lessons with the right
mouse button so that its Object menu appears.

Change the
Entity Type:

3 Select Change Item. The Scope must be set to Global
change in the Change Object dialog box. This option is
important when you change an object’s type or label.
Selecting Global causes the change to be made on every
diagram where that object occurs. If you select Individual,
the change is only made to the selected object. A Local
change would modify all occurrences on the current
diagram. All changes to a symbol type must be Global.

 4 Select Change Type.

 5 Select Attributive Entity and click OK.

 6 Click OK on the Change Object dialog box. The symbol
is changed on the diagram.

Figure 7-3 Changed Entity Type

Entity Relationship Diagrams

 pg.

Adding Relationship Lines
We need to establish the relationships between the entities on the current diagram.

Draw the 1 Click the first line button on the control bar.
Relationship:

2 Draw a line from Driving School to Student Driver. The
procedure is the same as that used to draw a line in
Lesson 5 - Diagramming. Click and hold the left mouse
button where you want the line to begin, drag the line
to where you want it to end. If you release the button
within the symbol, the line is connected automatically. If
not, you must double-click the left mouse button to end
the line.

Note

 When you use an elbow line and the elbow in the line does not bend in the
direction that you want it to, click the right mouse button while you are still
holding the left one, and the elbow inverts.

Label the 3 Enter ―Instructs‖ for the label of the first relationship. To
Relationship: set the relationship cardinality, click One for the
 Minimum, and click Many for the Maximum. This means

that ―Driving School instructs one or many Student
Drivers.‖ If you know the exact maximum number of
relationships, you can enter it in the detail box. (See
Figure 7-4.)

Entity Relationship Diagrams

Figure 7-4 Label Relationship Dialog Box

4 Press the TAB key to move the cursor to the next field or
click the mouse in the other label field.

5 Enter ―Attends‖ for the reverse relationship name. For the

Minimum click One, and for the Maximum click Many.
(This deliberate error is added to demonstrate the
capabilities of the Analyze function.) It means a ―Student
Driver attends one to many Driving School.‖ Both of
these relationships are considered mandatory because it is
necessary to attend driving school to be a student driver,
and it is necessary to have students to be a driving school.
Ensure that Type is set to Normal, and click OK.

Entity Relationship Diagrams

Draw Another 6 Draw a line from Driving School to Driving Lessons. For
Relationship: the first label, type ―Offers,‖ and set Minimum to Zero
 and Maximum to Many. For the second label, type ―Are
 Provided By.‖ Because this is an Identifying relationship,

Save:

7

the cardinality is automatically set to 1:1. Click OK.

Press CTRL+S to save the diagram.

Analyzing the Diagram
The Analyze function checks to ensure that the diagram is syntactically correct, meaning that
all relationship lines and symbols are labeled. You can also use the Analyze function to check
for certain normalization errors.

Start Analyze: 1 Select Analyze from the Diagram menu.

 2 Choose Current Diagram and Syntax Check. Click OK.
It tells you that the current diagram is correct.

Insert an Error: 3 Add a symbol to the diagram without naming it.

Analyze Again: 4 Run Analyze again. You see an error message
indicating that there is one unnamed entity. Click Cancel
to return to the diagram. The unnamed entity can be
deleted from the diagram by highlighting it with the
cursor in selection mode and pressing Delete.

Analyze Still Again: 5 Run Analyze again, but this time choose Normalization.
You see the error message that the relationship ―Driving
School [Instructs] Student Driver‖ is not normalized. This
is true. The error indicates that the cardinality is 0:many
or many:many in both directions. It is flagged as an error
because optional:optional and many:many relationships
can be difficult to implement. Click Cancel to close the
box.

Correct Cardinality
Error:

6 To change the cardinality of the relationship Attends,
click the relationship line with the right button.

 7 Select Change Item. Change the cardinality for Attends
from a maximum of Many to a maximum of One.

Entity Relationship Diagrams

102

 8 Click OK.

Analyze Once More: 9 Select Analyze from the Diagram menu. Choose
Normalization and click OK. The diagram is now correct.

Figure 7-5 Normalized Diagram

Automatically Generating a View of Your Data Model
Another very useful feature of Visible Analyst is the ability to generate new data model views
automatically. Since a data model can become very large and sometimes very difficult to
decipher with many relationship lines and symbols, generating a specific view of the data
model allows you to focus on one portion of your data model without having to redraw all of
the symbols and connections that you want to have on the diagram. The function for
generating a view is found on the View of Data Model submenu from the File menu.

There are three different options for generating a view from this function.

• There is an option to generate a Global view of your data model. All of the entities
and relationships that are in the repository are placed on one diagram. This feature is
important when additions are made to one portion of the data model and you would

Entity Relationship Diagrams

like to see how those changes have affected the entire model. Another use for this
feature is to generate an entity relationship diagram for imported entity information.

• You can generate a New view, allowing you to choose from the entities you have
already created on a diagram or in the repository those entities and attached
relationships you would like displayed on a new diagram. This allows you to make
additions or changes to your entire data model while concentrating on only one
portion.

• The other view option from the View of Data Model option is Process. A Process
view is an entity relationship diagram that represents a subset of your data model and
is based upon a process existing on a data flow diagram or in the repository. Data
elements that enter or leave the selected process in data flows and that are also
contained in the composition of entities cause those entities to appear in the process
view, along with the relationships existing between pairs of entities. A process view
allows you to concentrate on the specific portion of your data model that is involved
with the selected process. This is the type of view that you now create. The
composition information for the entities that appeared, as well as the attribute
information of the particular process, has already been entered for you in the sample
diagrams we supplied. This is so that you do not have to enter the information
necessary to demonstrate this feature of Visible Analyst.

To create the process view:

Start View Generation: 1 Select View of Data Model from the File menu, then

choose Process. The Select Process for Views dialog
box appears.

Entity Relationship Diagrams

104

Figure 7-6 Process View Dialog Box

Select the Process: 2 Click the process Issue License and click OK. Visible
Analyst searches the repository for entities that contain
data elements in common with the data flows that are
attached to Issue License and creates a ―View‖ of the data
model.

Save the New View: 3 Select Save from the File menu.

 4 Title the diagram ―Process View: Issue License.‖ This
diagram is a subset of your entire data model.

 5 Click OK.

Entity Relationship Diagrams

Figure 7-7 The Generated Process View

Entity Relationship Diagrams

106

Data Flow Diagrams

Lesson
Data Flow Diagrams

OVERVIEW
As described in Lesson 4 – Structured Modeling Techniques, a data flow diagram (DFD) is
used for process modeling. This modeling technique shows the flow and transformation of the
data without regard to the details of the data structure or type. It clearly represents where the
transactions and transformations occur in your system.

A DFD is not the same as a flow chart, although there are certain similarities. A flow chart is
much less specific with regard to how pieces of data are broken down, combined, and moved
around the system than is a DFD. On the other hand, a flow chart is much more specific and
physical than a DFD with regard to how processing is performed. A data flow diagram is
more flexible and has a more general applicability than does a flow chart.

Data flow diagramming is not designed to show materials flow, just data. For example, if you
were modeling a bookstore, how all of the receipts, invoices, inventory counts and financial
transaction items are handled would be shown on your diagrams; but the books themselves
would not. The books are materials, and their movement from the publisher to the store‘s
loading dock to the shelves to the bag in the customer‘s hand is materials flow and not a part
of data flow diagramming.

In any structured analysis methodology, the first task is to draw a top-level diagram, a simple
summary of the overall system. It shows the system environment and major inputs and
outputs, and is sometimes referred to as the basic problem statement. This is usually much
less specific than the way most people picture a system because so many details are omitted.
It should involve only one, two, or three processes and a very few external entities
(source/sinks). In the example that follows, you use only one process and two source/sinks,
though a top-level diagram could contain a few more of each. You break down (decompose)
these top-level elements into more specific processes and flows. Some methodologies and
analysts like to use a single process to represent the highest level of the data flow diagram.
This is called a context diagram, and only one process is allowed on a context diagram to
designate the entire system. For child diagrams, though, you can have multiple processes on
any diagram.

108

Data Flow Diagrams

The idea behind creating a general top-level diagram is twofold:
• To ensure agreement and understanding of the fundamental, overall mission of the

system. There is confusion on this more often than is realized, and the details can
rarely work well if the overall mission is unclear.

• To make explicit the source and derivation of the more detailed operations of the
system. Often it is the second or third level of design that is the taken-for-granted
starting point. Making the derivation explicit is important both for the design
discipline itself and for the completeness of the resulting documentation. If you start
Visible Analyst at the highest level, the tracking of all subsequent derivations
automatically results from the data repository documentation.

There are four meaningful objects that appear on data flow diagrams:

Process The process symbol is accessed with the first symbol button on the

control bar. If you are using Yourdon rules, a process is
represented by a circle. For Gane & Sarson rules, a process is
represented by a rounded-corner square. For SSADM and Métrica
rules, a process is represented by a square.

A process signifies that something is happening to transform data.
At the highest level you could show the whole bookstore as a
single process.

After creating the context (or high-level) diagram, you then break
that diagram down into processes representing the various
departments of the store, then into processes representing the
functions of the departments, then into subdivisions of these
processes, and so forth to as fine a level of description as you wish.
This is done by ―nesting‖ or decomposing a process and creating a
child diagram at a greater level of detail, one that shows all of the
inputs and outputs to the parent process and allows you to show
what is going on inside it. Processes have numbers, and those
numbers reflect the decomposition hierarchy, as shown in Figure
8-1.

Data Flow Diagrams

Figure 8-1 A Process Numbering Scheme

Data Store (or File) A data store or file is accessed using the second symbol
button on the control bar. If you are using Yourdon rules,
a file is represented by two horizontal parallel lines. For
Gane & Sarson , SSADM and Métrica rules, a data store
is shown as a rectangle with the right side open, and it has
a number. A data store is a place where data is kept while
it is not actively being processed. Your process model
does not show how it is stored, whether encoded on
magnetic disk or scribbled on the back of an envelope,
just that it is stored. Data can only enter a data store from
a process and can only leave a data store to a process. The
detailed data element in a data store can be defined in the
Visible Analyst repository.

110

Data Flow Diagrams

External Entity (or An external entity is accessed using the last symbol
Source/Sink) button on the control bar. It is represented by a large

square under Yourdon rules, or a square drawn with relief
under Gane & Sarson rules. For SSADM and Métrica
rules, an oval represents an external entity. An external
entity is something outside the boundary of the system
you are modeling that either sends data to your system or
receives data from it. It is effectively a black box, in that
what happens inside the external entity is not material to
your system description. It is only there to make clear
some of the environment in which your system resides.
External entities are optional. A net input data flow can
just as well be shown coming from nowhere as from an
external entity. Note that an external entity has no relation
to the entity that is a part of entity relationship modeling.
It is simply an unfortunate duplication of terminology.

Data Flow A data flow depicts the movement of one to many items

of data. Data can enter a system from outside, such as the
entries that appear on a publisher‘s invoice or a packing
list. (The invoice data flow is shown entering a process—
it must enter a process—where it is examined and acted
upon.) This process might send some of the data to be
stored, some to be printed, some to be ignored. These
invoice data elements may or may not be combined with
elements from other input data flows and may then exit
the process as parts of other data flows. To draw a data
flow line, click on a line type in the control bar.

Data Flow Diagrams

Yourdon/DeMarco

0

Process File Source/Sink

Gane & Sarson

1 D

Process Data Store External Entity

Métrica and SSADM

D

1

Process Data Store External Entity

Figure 8-2 Data Flow Diagramming Symbols

Note
 In Yourdon methodology, names of data flows contain hyphens instead of

spaces. When you enter a space in a data flow name, Visible Analyst uses a
hyphen.

This lesson leads you through the diagram creation process for a Gane & Sarson-based
process model. Basic drawing and decomposing a process into a subordinate ―child‖ diagram

112

Data Flow Diagrams

are shown. Also, you see how the system is validated using the rules capabilities of Visible
Analyst. You build errors into your diagram to demonstrate the types of errors that can be
identified by the Analyze function.

CREATING AND POPULATING A TOP-LEVEL DIAGRAM
The basic procedure for creating a top-level DFD is the same as creating a new diagram for
the unstructured diagram type. The only difference is that if you choose a context diagram, by
clicking the box at the bottom of the New Diagram screen, a process symbol number 0 is
automatically placed on the diagram; and you are prompted for its name. A context diagram is
permitted only one process symbol. You can add data flows and other symbols to the diagram.

This diagram has already been created for you so that you do not have to draw the diagrams
and enter repository information. It is named DMV System and is shown in Figure 8-9, the
top-level diagram of the DFDs you spawned from your FDD. This diagram also has one child
diagram called Driver‘s Licensing System. You can display a list of diagrams by selecting
Open Diagram from the File menu, or by clicking the Open button on the control bar. When
a diagram type has a plus sign next to it, it means that diagrams of that type have been
created. Click the plus sign to display the list of existing diagrams, and then double-click the
diagram you would like to open. (You can hide the list again by clicking the minus sign next
to the diagram type name.)

To close a diagram, click the control button in the top left corner of the diagram window and
select Close, double-click the control button, or choose Close Diagram from the File menu.

NESTING A PROCESS
In this unit, you structurally decompose a process symbol. This is also called ―nesting‖ or
―exploding‖ a process. The File menu contains the Nest function for this purpose; the
submenu contains the Explode function. Explode can also be found by clicking the right
mouse button on a process symbol that you want to model in more detail to display its Object
menu, and then selecting Explode.

If the process has not previously been decomposed, this generates a ―child‖ diagram from this
―parent‖ process. All of the data flows attached to the parent process are automatically
―dragged down‖ to the child diagram by the Nest function. These flows can be attached to the
lower-level processes that you create on the child diagram. Those lower-level processes can
then be nested further to increase the level of detail. In the current example, the child diagram
was created by the Spawn function that you executed in Lesson 6 – Functional Decomposition
Diagrams, and the processes you added to the FDD were placed on it.

Open the Diagram: 1 From the File menu or the open diagram button on the

Data Flow Diagrams

 control bar, open the data flow diagram DMV System, if

it is not still open from a previous lesson. This is the
context diagram for this project.

Select a Process: 2 Click the right mouse button on the process Driver‘s
Licensing System to open its Object menu, and choose
Explode. This opens the existing child diagram Driver‘s
Licensing System and is an alternate way to navigate
between the diagrams of your project, avoiding the File
menu.

Explode It: 3 Click the right mouse button on the process labeled
Issue License and choose Explode. The flows attached to
the parent process are dragged down to the spawn-created
diagram entitled Issue License, where the three process
symbols from the functional decomposition diagram were
placed. Maximize the diagram. The dragged-down flows
are lined up on the sides of the child diagram, input flows
on the left, output flows on the right. (See Figure 8-3.)
Since you did not move the symbols on the diagram
before nesting, it is possible that the dragged-down flows
were drawn over a symbol.

114

Data Flow Diagrams

Figure 8-3 Child Diagram With Dragged-Down Flows

Edit the Diagram: 4 Move the symbols and attach the flows as shown in
 Figure 8-4. To move a symbol, click and drag it with the

left mouse button. To attach the lines, click one endpoint.
Then click the left mouse button on the middle of the data
flow and drag the line so that it is positioned correctly.
When the data flow is selected, it changes color; and the
line becomes a dashed line as it is moved on the diagram.
Do the same for the other data flows. (Ignore for now the
other flows you see in Figure 8-4; you add them later in
this section.)

Data Flow Diagrams

Figure 8-4 The Completed Diagram

Note
 When you want to show a data flow line (or another type of line) as attached to a

process (or another type of symbol), you must drag the end of the line into
contact with the symbol. With the Auto Connect option on, Visible Analyst
redraws your connection at the outer edge of the symbol.

Add Flows and Text: 5 Add two new data flows: License-Approval and
Photograph. Since these are internal flows, as opposed to

 net input or net output data flows7appearing on the parent,
 the Nest function could not create them.

Change Line Format: 6 You may want to change the data flow lines from straight
 to elbow. This can be done by highlighting the line and

then selecting Line Settings from the Options menu and
changing the line orientation to elbow. Or click the elbow
line button on the control bar before drawing the lines.

To change the orientation of an elbow, position the cursor
over the line segment handle to change and click, but do
not release, the left mouse button. Move the mouse
slightly until the line changes from solid to dashed, and

7For a full explanation of net input and output flows, please see the Visible Analyst Operation
Manual or the online help.

116

Data Flow Diagrams

 then press the right mouse button. Release the left mouse
button to save the change.

7 Click the T button on the control bar to add the caption
text ―Issue License‖ to display the diagram title on the
diagram. Note that there is a way to do this automatically
by using boilerplates. You can read about this in the
Visible Analyst Operation Manual or in the online help
system. (Boilerplates are not available in the Education
Editions of Visible Analyst.)

Add a File: 8 If you wish, you can add the file DMV Database to the
diagram. Since it appears on the context diagram, this is
not necessary, but some people feel that showing it on a
lower-level diagram adds clarity. Move the flow New
Licensee-Record to attach it to the file DMV Database. A
symbol is considered attached to a line when the endpoint
of the line is touching the edge of the symbol. (It does not
automatically connect to the symbol.)

Save: 9 Select Save from the File menu.

CREATING A NEW DIAGRAM
In previous sections of this lesson, you worked with diagrams that were either supplied by
Visible Systems or created by the Spawn function. In this unit, you create and populate a new
diagram yourself and practice more data flow diagramming techniques. You structurally
decompose the process Administer Road Test (drawing a level-three diagram) that details
what occurs within the process Administer Road Test.

If you have any other diagrams open, you should maximize the window by clicking the
Maximize button in the upper right corner of the window.

Set the Zoom Level: 1 Set the zoom level to 66% from the View menu.

Open the Parent 2 Select Nest from the File menu.
Diagram:
 3 Select Parent from the submenu. You move up the
 diagram tree to display the diagram Driver‘s Licensing

Nest a Process:

4

System.

With the left mouse button, select the process symbol

Data Flow Diagrams

Administer Road Test by clicking on it. It is highlighted
as the current object.

5 From the File menu, select Nest and then Explode.

6 Choose Create New Diagram. If you had previously

nested this process, the child diagram would have
displayed automatically. This option is useful to drag
down new data flows that you may have drawn on the
parent diagram to child diagrams after the child diagram
has been created. A new diagram is drawn with your input
flows in the upper left corner of the diagram, and the
output flows in the upper right corner. If you cannot see
the flows, select 33% zoom from the View menu and your
diagram, shown in Figure 8-5, scales down so that you
can see more of it.

Figure 8-5 Exploded Diagram with Flows

Save: 7 Select Save from the File menu and click OK. The title
 of your diagram defaults to the name of the parent

process. Visible Analyst indicates that it is saving both
diagrams. This is because they are involved in a nest
relationship and both ends of the nest relationship must be
saved in the repository.

118

Data Flow Diagrams

Adding Processes to a Child Diagram
Now add processes to the child diagram named Administer Road Test. The processes
contained in this diagram are the individual processes that make up the parent process
Administer Road Test. This diagram is a more detailed representation of the transformations
and interactions that occur to the data flows within the parent process.

Add Processes: 1 Click the first symbol button, process, in the control bar.

 2 Add and label three processes: Validate Applicant, Test
Vehicle Knowledge, and Test Driving Capabilities.

Save: 3 Select Save from the File menu.

Attaching Data Flows to Symbols
The input data flows on the left side of the diagram and the output data flows on the right side
of the diagram were dragged down to the child diagram with the Nest function. It is
necessary to attach the data flows to the appropriate processes on the child diagram. To attach
a flow to a symbol:

Select a Line: 1 Put the cursor in selection mode by clicking the 
button on the control bar.

 2 Select the data flow Learners-Permit. The line handles
appear.

Drag It Into Position: 3 Drag it to the edge of the process symbol labeled Validate
Applicant, as shown in Figure 8-6.

Repeat for Other Flows: 4 Attach the other dragged-down flows as shown in Figure
8-6.

Add New Flows: 5 Click the first line button on the control bar.

 6 Add a flow from process Validate Applicant to Test
Vehicle Knowledge and label it ―Valid-Applicant.‖

 7 Click the straight line button on the control bar and add an
input flow into the process Test Driving Capabilities and
label it ―Test-Criteria.‖

 8 Add a flow from process Test Vehicle Knowledge to
process Test Driving Capabilities, but leave it unlabeled

Data Flow Diagrams

by clicking Cancel or pressing ESC when you are
prompted to enter a name. (This deliberate error is added
to demonstrate the capabilities of the Analyze function.)

9 Add an unattached data flow labeled ―Driving-Criteria.‖

(Remember, you must double-click to end the line when it
is not attached to a symbol.) This demonstrates the ability
to select an existing flow from the diagram when a flow is
split.

Save: 10 From the File menu select Save.

Figure 8-6 Child Diagram with Processes and Flows

120

Data Flow Diagrams

Splitting Data Flows
Decomposing, or ―splitting,‖ a data flow offers the capability to divide net input or net output
data flows into subflows, creating more detailed representation on lower-level diagrams. The
concept is illustrated in Figure 8-7. This capability greatly aids in the system analysis process
by showing more complex data flows at high levels of the structured specification and smaller
or even atomic data flows at the lower levels of the structured specification. This
decomposition capability provides a better understanding of the entire system and its parts.
Whenever a dragged-down data flow is split into subflows, the original flow is erased from
the current diagram and replaced by the selected or created subflows.

Figure 8-7 Splitting a Data Flow

Select a Flow to Split: 1 Click the  button on the control bar to put the
cursor into selection mode.

 2 Display the Object menu for the data flow labeled Road-
Test-Criteria by clicking on one end of it with the right
mouse button.

Start the Split: 3 Choose Split Data Flow.

 4 In the box labeled Enter Subflows, type in ―Vehicle-
Familiarity-Criteria.‖ This option draws a new flow (a
subflow of Road-Test-Criteria) on the diagram with this

Data Flow Diagrams

label. See Figure 8-8. If you want to add more than one
name in this box, press ENTER to place the cursor on a
new line.

Figure 8-8 Split Data Flow Dialog Box

5 In the box marked Select Flows from Diagram, click
Driving-Criteria. This option allows you to select an
existing flow to be a subflow of Road-Test-Criteria.

6 Click OK. Notice that the flow Road-Test-Criteria is no

longer on the diagram and that the flow Vehicle-
Familiarity-Criteria has been added to the diagram.

7 Attach the flow Driving-Criteria to the process Test

Driving Capabilities with the arrow pointing away from
the process symbol. (This error is made deliberately; it is
explained during the discussion of Analyze.)

8 Ignore the data flow Vehicle-Familiarity-Criteria, as

another test for Analyze.

122

Data Flow Diagrams

ANALYZING FOR BALANCE AND COMPLETENESS
As a project goes through a number of nested decompositions (nests), data flow splits, various
object moves and other edit procedures, there is a significant possibility that various data
flows are incorrectly used, or that objects are forgotten, etc. For a large project with many
symbols and flows, this is a real probability; and the errors are not easily detected by visually
checking the diagrams yourself. The Analyze function, found on the Diagram menu, is
designed to warn you of completeness and logic errors. The function checks diagrams for:
• Labels on all objects.
• Unattached objects.
• At least one input flow and one output flow for each process.
• Data flow balance, which implies that an input flow is used everywhere as an input flow

rather than an output flow and that data flows are properly accounted for at all levels of
the diagram hierarchy.

The diagram is now analyzed for adherence to the rules of the Gane & Sarson methodology.
Those rules are outlined in the Visible Analyst Operation Manual and in the online help.

Analyze the Diagram: 1 Select Analyze from the Diagram menu.

 2 Select Current Diagram and click OK.

Visible Analyst displays the errors found. To display the errors full screen, click the
Maximize button in the upper right corner of the error window. If an error message extends
beyond the box, use the scroll bar at the bottom of the box to scroll the text to the left. There
should be five messages.

Data Flow labeled This indicates that Vehicle-Familiarity-Criteria is not
‘Vehicle-Familiarity- attached to a process.
Criteria’ is dangling.

There are 1 unnamed This is the data flow that you left unlabeled on the
Data Flow(s). diagram.

Net input Data Flow This indicates that the data flow Test-Criteria has been
‘Test-Criteria’ is not added to the child diagram but is not accounted for on the
shown attached to parent parent diagram.
Process.

‘Driving-Criteria’ This indicates that Driving-Criteria is being used as a net should
be shown as a net output flow on the diagram, while it is used as a net input input Data
Flow. flow on the parent.

Data Flow Diagrams

Input Data Flow This message is a result of the fact that Vehicle-
‘Road-Test-Criteria’ Familiarity-Criteria, a child flow of Road-Test-Criteria is
on parent is not shown. not attached to a process as a net input flow, even though

it appears on the diagram.

Note
 Analysis error dialog boxes allow you to keep them on the screen while you

carry on various Visible Analyst activities. This is to make it easier for you to
correct the errors found by Analyze. If you don‘t want to keep the box open,
press ESC or click Cancel to close it.

Fixing the Errors
Correct the Data Flows: 3 Attach the data flow Vehicle-Familiarity-Criteria to the

process Test Vehicle Knowledge, as shown in Figure 8-9.

4 Reverse the direction of Driving-Criteria, so that it
becomes an input flow to Test Driving Capabilities (see
Figure 8-9), by dragging the endpoints.

5 Delete Test-Criteria by clicking on the line and pressing

the DELETE key.

6 Label the unlabeled data flow ―Vehicle-Knowledge‖ by
clicking on the line with the right mouse button and
selecting Change Item from the Object menu. Then
enter the label and click OK

Analyze Again: 7 Select Analyze from the Diagram menu again.

8 Choose Current Diagram and click OK. The diagram

should now be correct.

Note
 It is unnecessary to save a diagram after Analyze has been performed because

Visible Analyst automatically saves it for you before analysis begins.

124

Data Flow Diagrams

Figure 8-9 The Completed Diagram

GENERATING A PROCESS DECOMPOSITION MODEL
A process decomposition model for a process shows you the hierarchical structure of a
decomposed process that has been nested.

Note

 A process decomposition diagram is very different from a functional
decomposition diagram. The former is simply an unstructured diagram
displaying the hierarchy of processes that are descendants of an indicated
process. The latter, discussed in Lesson 4 -Functional Decomposition Diagrams,
is a full diagramming methodology for performing business planning.

Open the Diagram: 1 From the Window menu, click ―DMV System: DFD.‖

Select a Process: 2 Click the process Driver‘s Licensing System with the

Data Flow Diagrams

 right mouse button.

Create the
Decomposition:

3 Select Decompose. An unstructured diagram is generated
showing the hierarchical structure of the process.

Save the New Diagram: 4 Select Save from the File menu. Label the diagram
―Process Decomposition‖ and click OK.

Figure 8-10 Process Decomposition Diagram

126

Data Flow Diagrams

Working with the Repository Functions

Lesson
Working with Repository Functions

OVERVIEW
This unit helps familiarize you with the operation of the Visible Analyst repository and shows
you the power of an online, interactive database for systems analysis, design and data
modeling. The TEST project used in the previous lessons is used as the basis for your
exercises.

The repository is a powerful tool for creating and managing the narrative portions of a
system‘s specification. A project repository is used to provide an entry location for all project
documentation. Each graphical entry on your diagrams has an automatically created
corresponding entry in the project repository, as do any items entered into a Composition or
Alias field.

You have the ability to thoroughly define all of your graphical entries in the repository or to
simply enter notes about them in the Notes field. As an integrated part of Visible Analyst, the
repository operates in parallel with the diagramming functions to accomplish data
decomposition logically. It contains powerful data management, text editing, import/export,
and report facilities. By using it, meaning can be ascribed to diagrams and an asset of ever-
increasing value can be created. After defining items, changing entries and entering notes, you
can generate reports from this information in many different forms.

When you finish defining your data and processing, the repository also allows you to put it
into an ASCII file and export it. The ASCII file can then be sorted to move data specifications
to your database and process specifications to your text editor for writing code. (The Shell
Code Generation utility can also be used for this purpose.)

Note

 Users of the Educational and Demonstration versions of Visible
Analyst cannot add items directly into the repository. First add the
object to the diagram, and then edit it into the repository.

128

Working with the Repository Functions

Figure 17-1 Blank Repository Dialog Box, Page One

REPOSITORY BASICS

Repository Control Buttons
The repository control buttons (see Figure 17-2) are always displayed at the bottom of the
repository dialog box. Each of the button functions is accessed by clicking on the button or, as
is customary in Windows, by using its keyboard shortcut by holding down the ALT key and
pressing the underlined letter to execute the button function. Only the functions available to
you at a given time are active; the others are grayed. The button functions are:

Working with the Repository Functions

Figure 17-2 Repository Dialog Box Control Buttons

SQL This button opens the Generated SQL for View dialog box. This
dialog box displays the SQL generated for the current view object
based on the view table and column specifications selected when
creating the view, as well as the current SQL dialect. This button
is active only when the entry type is View.

Dialect This activates the RDBMS SQL Dialect dialog box. From there,

you can change the current SQL dialect.

Delete This deletes the current repository entry from the database. An
entry can only be deleted when it has no location references,
meaning that it does not appear on a diagram nor as an attribute of
another repository item.

Clear This clears the display of an entry and displays a blank

repository dialog box. This allows you to Search for an existing
entry or add a new entry. If you have made changes, you are
prompted to save them before clearing. Your current location in
the repository remains unchanged.

Next This displays the next sequential repository entry that meets the

repository search criteria (see below).

Prior This displays the previous sequential repository entry that
meets the repository search criteria.

Save This saves all changes made to an entry.

Exit This or the ESC key exits from the repository.

Search This initiates a search for a particular entry in the repository.

The procedure is explained in the section on Search Capabilities.

Expand This allows you to expand or contract the display size of some
Contract fields. The fields that normally display four lines can expand to

display 15.

130

Working with the Repository Functions

Jump This allows you to jump immediately to another entry that is
referred to in the current one. This feature is described in the
section on Navigation Capabilities.

Back This button provides a means of jumping to the previous repository

entry. You can then continue to move backwards displaying
previous repository entries.

File This allows you to insert text from a DOS file at the cursor

position or to copy highlighted text to a DOS file. It is explained in
further detail in the Visible Analyst Operation Manual and in the
online help system.

Copy This button provides a means of copying the current object.

History This provides a means of jumping back to a previously displayed

repository object. A list is kept of every object definition that has
been displayed. If you choose this button, the History dialog box
appears and you can jump between entries by double-clicking on
an entry. The maximum is 500 objects.

Help(?) This displays context sensitive help about the repository. You

can also press F1 to activate the help system.

Search Criteria This allows you to specify how the repository is to be searched.
It is explained in the section on Search Capabilities.

Other buttons that may be displayed on the Define dialog box are:

Primary Key If the current object being examined is an entity type, the primary

key button is displayed to the left of the Composition/Attributes
field.

Attributes Details This button provides a means of populating the composition of a

repository entry with components and physical information. This
button is displayed to the left of the Composition/Attributes field.

When the Entry Type is a Class, or when the Classic User Interface
is turned off, the Add button displayed beneath the Attributes
Details button is active. You can use this button to add details.
When you begin typing in the field next to the Add button, the

Working with the Repository Functions

button is enabled. Click the Add button to add the attributes to the
Attributes field.

Editing Keys
Because the Edit menu is not accessible from the repository, you can use the right-click menu
that is available when an object (text) is highlighted and you click the right mouse button.
Using the right-click menu, you can Cut, Copy, Paste, or Delete the selected object.

Field Types
The data repository of a Visible Analyst project is displayed using Define dialog box
variations corresponding to different diagram objects. You see and work with some of these
variations during the course of this lesson. The basic dialog box, shown in Figure 17-1, is for
data elements, aliases, miscellaneous objects and external entities or source/sinks. Other
objects, such as data stores, processes, functions, entities, relationships, modules, data flows
information clusters, etc., have variations in individual fields and tabs of the Repository
dialog box to accommodate the specific needs of those items. Some of these differences are
seen later in the lesson.

Label Field
This is the name of the repository item. The names of items drawn on diagrams are
automatically entered here.

Entry Type Field
This tells Visible Analyst what kind of object the item is: process, data flow, entity, etc. The
entry type can be entered manually, or you can select the type from the scroll box accessed by
clicking the down arrow at the end of the entry type field.

Note

 You can edit the Entry Type and Label fields of data elements and data
structures that do not appear on diagrams. The entry type for a data element
cannot be changed if physical information for that element has been entered.

Description Field
The Description field is a two-line field that provides a convenient place to enter a somewhat
more extensive descriptive title of the object than the Label field allows. The contents of this
field are used for the Comment on Column (data elements) and Comment on Table (entities)
when SQL DDL is generated if the selected SQL dialect supports this syntax.

132

Working with the Repository Functions

Alias Field
The Alias field contains 10 lines of 128 characters each. It allows for the entry of alternative
labels to the one used as the object label. This is most commonly used for indicating the
cryptic abbreviations that are sometimes used in the actual coding of a software program, as
opposed to the plain English names that are desirable for reference. The Alias field is an
intelligent field. Data names entered into it establish new repository entries for these aliases.

Attributes Field
The purpose of the Attributes field is to accumulate the collection of data elements that you
wish to define as constituting a data flow, entity, data store, etc. The Attributes field is an
intelligent field. Data names entered into it establish new data element repository entries or
update existing ones. These new data elements can then be used for further definition. Data
flows, data structures and couples can also appear in some Attributes fields.

When you click the Attributes Details button, the Add Attributes dialog box appears. Using
this dialog box, you can define up to 12 components and some of their properties. As you
enter items, the dialog box automatically scrolls as necessary to allow you to enter more items
until you reach 12. When you complete the entries, click OK to add them to the Attributes
field. If you need to add more than 12 components, click the Attributes Details button again;
and a new dialog box opens so that you can add additional attributes.

Use the Add button at the bottom of the Attributes field to add components one at a time.
When you begin typing in the field next to it, the Add button becomes active. Complete your
entry, and then click Add to enter the component in the Attributes field.

Values & Meanings Field
The Values & Meanings field allows an unlimited number of lines. The maximum number of
characters that can be contained in the field is 64K. This field allows the entry of specific
information about the value(s) the item can take.

Discriminator Values & Meanings Field
If the current object is a data element that is used as a discriminator, this field contains a list
of values to identify the subtype entities. For each subtype, a value can be entered that will
uniquely identify it. By default, these values are numbers starting with 0 for the supertype.
To change the value, click the value until an edit control appears, make your changes, then
press ENTER.

Notes Field
The Notes field is also a field that allows you to enter any pertinent information about the
object. The maximum number of characters that can be contained in the field is 64K. This is
the logical field to use when creating hyperlinks to external documents, web pages or other
application files.

Working with the Repository Functions

Location Field
This field displays two types of usage information. The field can contain the diagram name
(and, for DFDs, the diagram number) of every diagram where the item appears. The field can
also tell you if the item appears as an attribute of another item. This second kind of location
entry has the entry type of the parent item, followed by an arrow and the name of the parent
item.

Other Pages and Fields
Other pages of the Define dialog box contain additional information. For example, pages 2
and 3 of the basic repository form provide location and relationship information and
specifications for PowerBuilder/VISION extended attributes. These two pages are similar for
most entry types. For some entry types, additional pages will be displayed:
• When the entry type is an entity, the next five pages contain keys, foreign keys, triggers,

check constraints, and physical information.
• For views, the next five pages provide table, column, join, clause, and option

information.
• When the entry type is a relationship, there are additional pages that contain foreign key

and cardinality information.
• When the entry type is a tablespace, an additional page contains property information.

A full list and complete descriptions of pages and fields can be found in the Operation
Manual and in the online help.

Object Repository
The Visible Analyst repository provides several additional forms and data input components
for supporting the object-oriented concepts. The object repository components are detailed
below.

Attributes
The Attributes field replaces the Values & Meanings field whenever the Repository dialog
box displays a class. The field contains a list of the data members for the class showing the
local data element and type. To add, change, or remove local data elements, click the
Attributes Details button or select Add/Change from the Repository Object menu. For each
attribute, the following information can be defined:
• Name. The name of the attribute. Each attribute of a class has a separate entry in the

repository with a type of local data element. This is an optional field. The search button
can be used to find other local data elements in the repository.

• Type. The attribute type can be a class, data element, or data structure. If the type does
not exist in the repository, a new class is created. The location field of the attribute type
contains a reference to the current class. This is a mandatory field. The Search button can
be used to display a list of valid types. If the attribute type is a data element or elemental

134

Working with the Repository Functions

class, its physical characteristics are displayed. Entries added to the Type field are saved
as data elements for an entity or data flow, and class/subtype element when the object is a
class.

• Limit. The number of occurrences of the attribute. If this field is blank, the attribute
occurs once.

• Reference. A qualifier to indicate the access method for an attribute. Value indicates the
object defined in the Type field is used; Address indicates a pointer to the object is to be
used; and Reference indicates a reference to the object is to be used. The default is Value.

• Visibility. Public members have global visibility. Private members are only accessible to
member functions and friends. Protected members are accessible to derived classes and
friends. Implementation members are only accessible to the class itself. The default is
Private.

• Qualification. Constant indicates a member‘s value cannot be changed. Volatile
indicates the member can be modified by something other than the program, either the
operating system or hardware. Static indicates there is only one instance of the member
regardless of the number of times a class is instantiated. The default is None.

• Physical Characteristics. If the attribute type is elemental, the physical characteristics
can be set.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist) and updates that entry‘s location field. If an item
is removed, this field is updated to reflect this. These repository entries are generally created
as classes unless a data element already exists with the same name or the physical
characteristics are defined

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. Insert is used to insert a new attribute into the list at the
current position, while Delete removes the current attribute (the current position is indicated
by ). When you have completed the entries, click OK to add them to the Attributes field.

Item names entered into this field may contain up to 128 characters each and may consist of
any upper or lower case letters, numbers, spaces, periods, underscore characters and hyphens;
but the first character must always be a letter.

Attached Entities/Classes
The attached entities/classes for the currently displayed relationship are listed in this field.
When an inheritance relationship is displayed, the characteristics of that relationship can be
changed (see changing Inheritance Characteristics later in this chapter). Otherwise, the
information cannot be edited from within the repository; and all changes must be made on a
diagram. The field lists the two entities or classes attached to this relationship. Below the
second entity name is listed the reverse of the current relationship. If either direction of the
relationship has not been named, the name of the relationship in the reverse direction is

Working with the Repository Functions

displayed as ―reverse of (opposite relationship name).‖ This field allows you to jump to the
repository entries for any of these entities or relationships, as described above.

Relations
For an entity or class, the Relations field displays the relationship name followed by the name
of the entity or class on the other end of this relationship for each relationship attached to this
entry. These sets are ordered alphabetically by the opposite entry name. When an inheritance
relationship is displayed, the characteristics of that relationship can be changed (see Changing
Inheritance Characteristics later in this chapter); otherwise, the information cannot be edited
from within the repository; and all changes must be made on a diagram.

This field allows you to jump to the repository entries for any of these entities, classes, or
relationships by positioning the cursor on the line containing an entity, class, or relationship
name and clicking the Jump button.

Long Name
When a repository entry, either a local data element or a module, belongs to a class, the full
name of the entry includes the class name. The Long Name field displays this name and, in
the case of modules, includes the argument list (the argument list is required to differentiate
overloaded member functions). If you want to change the argument list for a class method,
click the right mouse button on the Long Name field and select Change (see the Methods
section later in this chapter for details). If you want to change the class to which the method
belongs, select Class from the Repository Object menu. To display the class definition, click
the Jump button.

Class Characteristics
Concurrency, displayed on the Methods/Friends tab, is a class property that distinguishes an
active object from inactive object. An active object may represent a separate thread of control.
A sequential object is a passive object whose semantics are guaranteed only in the presence of
a single thread of control. A guarded object is a passive object whose semantics are
guaranteed in the presence of multiple threads of control.

A persistent class exists beyond the lifetime of an executable program. This means it must be
stored on a non-transitory storage device. If the subtype of a class is set to either entity
(associative or attributive) and the class is used on an entity relationship diagram, this field
cannot be changed.

An abstract (or virtual) class cannot be instantiated because it contains pure virtual methods.
If pure virtual methods exist for a class, Abstract is checked. If you attempt to uncheck this
field, all pure virtual methods are reset to virtual. If you attempt to check it and virtual
methods exist, they are converted to pure virtual methods.

136

Working with the Repository Functions

Figure 17-3 Class Attributes

Methods
Methods (or Member Functions) are the operations that are defined for accessing a class. The
Methods field contains a list of the functions for a class showing the name, return value,
argument list, and flags to indicate its visibility. To add, change, or remove methods, click on
the Methods field and click the Attributes Details button or select Add/Change from the
Repository Object menu. To add a new method for a class, click the New button and type the
name of method you wish to add. To search for methods that have already been defined in the
repository, click the Search button. The list contains all modules that have previously been
defined in the repository. If the module already belongs to a class, the class name is displayed.
Note that when you select a module that already exists, the complete definition for that
module is used including return value and argument list. Click OK to add the method name to
the list of methods for the current class. For each method, the following information can be
defined:

Working with the Repository Functions

Figure 17-4 Class Methods

• Returns. The return type can be a class or data element. If the type does not exist in the

repository, a new class is created. The Location field of the attribute type contains a
reference to the method. This is an optional field. Click the Search button to display a list
of valid types.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• By. A qualifier to indicate how the return value is passed. Value indicates a copy of the

parameter is passed; Address indicates a pointer to the object is to be used; and Reference
indicates a reference to an object is to be used.

• Visibility. Public methods have global visibility. Private methods are only accessible to
other member functions within the same class and friends. Protected methods are
accessible to derived classes and friends. Implementation methods are only accessible to
the class itself. The default is Public.

• Qualification. Static indicates a method can be used without a specific instance of an
object (it can only be used with static attributes (data members)). A Virtual method is one
that you expect to be redefined in a derived class. A Pure Virtual method has no
definition and must be defined in a derived class. A class with any pure virtual functions
is an abstract (or virtual) class. The default is None.

• Arguments. A list of parameters to be used by the method. This is an optional field. If a
method appears more than once with the same name within a class, it must have a
different argument list for each definition. This is known as function overloading. See the
next section for defining arguments.

138

Working with the Repository Functions

When a method is added to a class definition, an entry of type module is created in the
repository. The long name includes the class name and the argument list. The argument list is
needed to differentiate between overloaded functions.

Note

 Because the same name can be used for more than one method, there may be
duplicate module entries in the repository, each belonging to a different class.

Arguments for Methods
When defining methods (member functions) for a class, the parameters to the function need to
be specified. To add, change, or remove arguments, click the Arguments button on the
Method Definition dialog box. For each argument, the following can be defined:
• Name. The name of the parameter. This is an optional field.
• Type. The parameter type can be a class or data element. If the type does not exist in the

repository, a new class is created. This is a mandatory field. The Search button can be
used to display a list of valid types. If the parameter type is a data element or elemental
class, its physical characteristics are displayed.

• Limit. The number or size of the parameter. If this field is blank, it occurs once.
• Pass By. A qualifier to indicate the how the parameter is passed. Value indicates a copy

of the parameter is passed; Address indicates a pointer to the object is to be used; and
Reference indicates a reference to an object is to be used. The default is Value.

• Qualification. Constant indicates a parameter‘s value cannot be changed. Volatile
indicates the parameter can be modified by something other than the program, either the
operating system or hardware. The default is None.

• Physical Characteristics. If the parameter type is elemental, the physical characteristics
can be set.

For every item entered into the Type field, Visible Analyst creates a repository entry (if one
with the same name does not already exist). These repository entries are generally created as
classes unless a data element already exists with the same name or the physical characteristics
are defined.

As you enter items, the dialog box automatically scrolls as necessary to allow you to enter
more items until you have finished. INSERT is used to insert a new parameter into the list at
the current position, while the DELETE key removes the current parameter (the current
position is indicated by ). When you have completed the entries, click OK to update the
method name field. Item names entered into this field may contain up to 128 characters each
and may consist of any upper or lower case letters, numbers, spaces, periods, underscore
characters and hyphens; but the first character must always be a letter.

Working with the Repository Functions

Friends
The Friends field displays a list of both friend classes and methods (or functions). A friend is
allowed access to the private data members of a class. To add friends, click on the Friends
field and click the Search button, select Add from the Repository Object menu, or double-
click on the Friends field while pressing CTRL key. A list of classes and member functions is
displayed in the Search list box. Locate each repository item you want to place in the Friends
field and click the Search button; the item is added to the Select list box at the bottom. When
you have found all of the entries you want, click the Select button and they are entered into
the Friends field.

To remove a friend, highlight the desired item and press the DELETE key or select Cut or
Delete from the Repository Object menu.

Navigation Capabilities
In this section, you change the displayed repository entry using Next, Prior, and Jump.

Note

 The repository saves some internal settings for the duration of a Visible Analyst
session. If these are set incorrectly, they may interfere with the smooth flow of
this lesson. Therefore, we suggest that if you or another user worked in the
repository during the current session, you should exit to Windows and restart
Visible Analyst. In this way, you have a clean slate on which to run this lesson.

Open the Repository: 1 Access the repository using either Define from the
Repository menu or CTRL+D. A blank Define dialog
box is displayed.

Access an Entry: 2 Type ―Person Information‖ in the Label field and press
ENTER twice. (Pressing ENTER once brings up the
Search dialog box. Pressing it a second time displays the
entry found. If you press ENTER twice quickly, you get
the same result without displaying the search box.) The
repository entry for Person Information displays with all
of the information that has been entered into the
repository for this entry.

Move Around: 3 Click Next. The next entry in alphabetical order is
displayed.

 4 Click Prior. Person Information is again displayed.

140

Working with the Repository Functions

Jump to Other
Entries:

5 Click the element Name in the Attributes field. (It may
be necessary to scroll the contents of the field to bring
Name into view.) Click Jump. (Click Yes if you are asked
if you want to save Person Information.) The repository
entry for the data element Name is displayed.

 6 Move to page two by clicking the Physical Information
tab at the top of the dialog box. (The current page
number is displayed in the upper right corner of the
Define window.) This displays more information about
the current entry, including the Location information that
indicates where the current entry is used.

 7 Click the line in the Location field containing Person
Information. This highlights the line.

 8 Click Jump. The entry for Person Information is once
again displayed. The Locations tab (page 2) is currently
displayed. An alternative to selecting Jump to switch to
another repository entry is to double-click the entry name
in the Location field or to click the Back button.

 9 Move to page one by clicking the Description tab.

Search Capabilities
Searching for entries in the repository is an easy procedure. It can also be a very useful feature
because you can set the Search Criteria to display only certain entry types as you move from
one repository entry to the next. To search for an entry in the repository:

Access an Entry: 1 Click Clear. This clears the dialog box but does not
delete the entry.

 2 Type ―Road Test‖ and press ENTER twice. The
repository entry for Road Test is displayed with all of the
information that has been entered into the repository for
this entry. (This was done for you in the samples included
with the TEST project.)

 3 Click Clear.

Working with the Repository Functions

Search for the 4 Click the Search button to open the search box to select
Entry: from the repository. Type ―r‖ and entries that begin with
 ―r‖ appear in the list box. If you now type an ―o,‖ you see

that the repository searches incrementally as you type,
getting closer to the entry you want.

Figure 17-5 Repository Search Dialog Box

5 Click Road Test and then click Search. The repository
entry for Road Test is displayed.

Setting the Search Criteria
Search criteria set the scope of the entries that are displayed as you search through the
repository.

Clear the Dialog Box: 1 Click Clear to clear the dialog box.

Set the Criteria: 2 Click Search Criteria. You see a dialog box
entitled Set Search Criteria, as shown in Figure 17-6.

142

Working with the Repository Functions

Figure 17-6 Setting Repository Search Criteria

3 In the box entitled Searches Affected, select All. This is
the method used to limit the scope of the entries displayed
when navigating the repository using Next and Prior, as
well as the entries that are displayed when you select
Search.

4 In the box labeled Entry Characteristics, select All. This

tells Visible Analyst to search all items in the repository,
rather than only those entries that are Undefined or entries
that have No Locations. No Location entries are typically
those that have been entered directly into the repository
rather than added to the repository by being placed on a
diagram.

5 Click the down arrow on the right side of the field marked

Scope. This allows you to choose the diagram type to
which you wish to limit your search. Select Data Flow.

6 Click the down arrow on the right side of the field marked

Entry Type(s). This allows you to be very specific about
the type of entry to which you wish to limit your search.
You can choose individual types and some combination
types.

7 Select Data Flow, then click OK.

Working with the Repository Functions

Try Out the Criteria: 8 At the blank Define dialog box, click Search. Because
your search criteria limits searches to data flows, the list
displays only the entries in the repository of the type data
flow. Select Road-Test-Criteria and then click Search.

 9 Now click Next. The next entry displayed is the next data
flow in alphabetical order, rather than simply the next
entry in alphabetical order. If you click Next a few more
times, you notice that only data flow entries are displayed.

 10 Click Search Criteria again and set Scope back to Entire
Repository. Be sure that Entry Type(s) is set to All.
Click OK.

Using Search to Add Items to a Field
The Search feature can also be used to add repository entries to a field without retyping them.
This option is very useful for adding multiple data elements to an Attributes field. Instead of
typing the name into the field, you can select it using the Search function.

Clear the Dialog Box: 1 Click Clear.

Find an Entry: 2 Type ―V‖ in the Label field and click Search.
Valid-Applicant should be the first entry on the list. Click
on it and it appears in the Search For field. Click Search
and the repository entry for Valid-Applicant appears.

Select Attributes: 3 Click on the Attributes field.

 4 Click the Search button. The available data elements are
displayed. Double-click on Address, Birth Date, Name,
and Social Security Number. All the selected elements
are displayed at the bottom of the Search dialog box as
shown in Figure 17-7.

144

Working with the Repository Functions

Figure 17-7 Add Information with Search

Add Attributes 5 Click Select. All the selected elements are added to the
and Save: Attributes field. Click Save and then click Exit.

ADVANCED REPOSITORY FEATURES

Adding Information to the Repository
In this unit, you add attribute information to an entity; the attributes consist of the data
elements that make up the entity. You also add the primary key information, so that you can
demonstrate Key Analysis and Key Synchronization to migrate foreign keys across
relationships automatically. All of the key information relates to the method for accessing
tables in a database. We assume that each entity corresponds to one table.

Open a Diagram: 1 Open the entity relationship diagram ―Driving School

View‖.

Working with the Repository Functions

Display a Repository
Entry:

2

3

Click the  button on the control bar.

With the left mouse button, double-click the entity
 Student Driver. Its repository entry is displayed.

Enter Attribute Data: 4 Place the text entry cursor in the field immediately to the
right of the Add button under the Attributes field. Type
―Student Name‖ and click Add. Add ―Home Address‖
and ―Age‖ in the same manner. Since the data elements
you just added to the Attributes field are not already in the
repository, entries for each are automatically added when
you click Save.

Save the Entries: 5 Click Save to save the attributes you entered.

Enter Key Information: 6 Click the key button to display the Primary Key dialog
box. Select Student Name to move it from the Columns
in Table box to Columns in Key box. Click OK to return
to the Define dialog box.

 The key notation by Student Name indicates that Student
Name is the primary key for this entity.

146

Working with the Repository Functions

Figure 17-8 Student Driver Attribute Information

Clear the Dialog Box: 7 Click Clear. This clears the repository dialog box but
does not delete the entry from the repository.

Access Another Entry: 8 Type ―Driving School‖ in the Label field and press
ENTER.

Working with the Repository Functions

Add Composition: 9 Click the Attributes Details button and type ―Driving
School Number‖ and ―Driving School Name,‖ each on a
separate line. Click OK.

Create Primary Key: 10 Click the Key button next to the Attributes field to display
the Primary Key dialog box.

 12 Click Driving School Number in the Columns in Table
box to move it to the Columns in Key box. Click OK to
return to the Define dialog box.

Save: 12 Click Save to save your changes, then click Clear.

Access Another Entry: 13 Type ―Driving Lessons‖ in the Label field and press
ENTER.

Add Attributes: 14 Click the Attributes Details button, place the cursor in the
Type field, and then click Search.

 16 Scroll the search box until Driving School Number
appears. Click Driving School Number and then click
Search to enter it on the Attributes dialog box. Move the
cursor to Type field of the next line. Add Student Name in
the same manner.

 17 Move the cursor to the Type field of the next line, and
type ―Lesson Number.‖ Click the cursor in the Limit
field to enable the Physical Characteristics pane at the
bottom of the dialog box. Select Integer as the Data
Type.

 18 Click OK to add the attributes to the Define dialog box.

Create Primary Key: 19 Click the Key button next to the Attributes field to
display the Primary Key dialog box. Click Lesson
Number in the Columns in Table box to move it to the
Columns in Key box. Click OK to return to the Define
dialog box.

Save and Exit: 20 Click Save and then click Exit.

148

Working with the Repository Functions

Key Analysis and Key Synchronization
The Key Analysis and Key Synchronization functions, found on the Repository menu, can
help you set up a consistent relational database key structure. There are three types of keys
used in a data model: primary, foreign, and alternate keys. All keys are designated in the
Attributes field of an entity in the project repository. A primary key is one or more attributes
or data elements that uniquely identify an entity. To designate a data element as a primary
key, the yellow key notation is used in the Define dialog box. On the diagram, primary keys
are displayed in the area immediately under the entity name when the primary key level is
selected from the control bar or the View/Entity Display Options menu. A foreign key is a
non-key attribute in one relation that appears as the primary key (or part of a compound
primary key) in another relation. The gray key notation in the Attributes field of an entity
designates a foreign key. The FK notation is shown when the entity on the diagram is
displayed at the attribute view level.

Key Analysis verifies that the key structure for your data model is complete, checking that all
key information is correctly identified for the data model. Key Synchronization analyzes the
key structure and migrates data elements that you designate as keys, or parts of compound
keys, across relationships to their associated entities, and creates the resulting foreign keys.
Using associator element names in relationship repository entries makes this process work
better. (Please check the Visible Analyst manual or online help system for an explanation of
associator elements.)

Key Analysis and Key Synchronization both involve analyzing the primary key [PK] and
foreign key [FK] designations in the TEST project repository. A primary key is an attribute or
data element that uniquely identifies a record.

Run Key Analysis: 1 Select Key Analysis from the Repository menu. Visible
Analyst scans the entire repository and indicates any
errors it finds.

Working with the Repository Functions

Figure 17-9 Key Analysis Error Messages

View the Errors: 2 Click the Maximize button in the upper right corner of
 the errors dialog box. Scroll through the messages. You

see that there are error messages indicating missing
foreign keys for the entities on the current diagram.

Note
 You can keep analysis error dialog boxes on the screen while you carry on

various Visible Analyst activities. This is to make it easier for you to correct the
errors found by Analyze. The same holds true for SQL Schema Generation,
Shell Code Generation, etc.

.

3 Click Cancel.

4 Select Key Synchronization from the Repository menu.
Visible Analyst first analyzes for key errors and then
migrates the foreign keys across relationships.

5 Maximize the Key Synchronization Messages dialog box.

Key Analysis messages appear first, followed by Key
Synchronization messages. You should notice the Key
Synchronization messages, indicating the foreign keys
that have been migrated.

150

Working with the Repository Functions

Figure 17-10 Key Synchronization Messages

 6 Click Cancel.

Examine the
Migrated Key:

7 Double-click Student Driver. Notice the foreign key
Driving School Number that has been added. This was
done by Key Synchronization. It saves you from
migrating all of the foreign keys manually.

 Note also that Analyze added text describing the key. All
text following an asterisk is considered a comment and is
ignored by the repository. (When the object interface is
enabled, comments are not displayed.)

Working with the Repository Functions

Figure 17-11 New Foreign Key Information

8 Click Exit.

9 Deselect Student Driver on the diagram.

View Objects
Visible Analyst Corporate and Zachman Editions support the concept of an SQL view, which
can be thought of as a derived or virtual entity. A view is similar to an entity in that it has a

152

Working with the Repository Functions

composition, but the items that appear in the composition of a view must belong to other
entities or be expressions based on data elements used by another entity.

An SQL view is made up of two major components: a list of column names and a select
statement that is used to filter information from the tables in the view. The select statement
can contain not only the primary select clause, but also any number of sub-selects and union
selects. When view is selected as the entry type, view-specific Define dialog box pages are
displayed. Using these pages, you can select tables, columns, join relationships, clauses, and
other options for the view. An expression builder is available to help you create the
expressions to be used in the filter, group by, having, start with, connect by, or join expression
controls.

Detailed information about views can be found in the Operation Manual and in the online
help system.

Note

 Views are not available in the Education Editions of Visible Analyst.

Generate Database Schema
The Corporate and Zachman Editions of Visible Analyst generates SQL DDL (Structured
Query Language – Data Definition Language) schema from the information contained in the
repository. In the Corporate and Zachman Editions, you can select from several different
dialects of SQL, including a User Defined type, to allow the use of a dialect not currently
supported by Visible Analyst. For more information on the custom feature, see the Operation
Manual or the online help system. The statements that are supported include CREATE
TABLE, CREATE INDEX, and COMMENT ON. More information is contained in the
Operation Manual or in the online help system.

The Education Editions of Visible Analyst allow you to generate SQL for Microsoft Access
and Oracle only. To generate SQL:

Choose Access Dialect: 1 Choose SQL Dialect from the Options menu, then
choose Access.

Generate SQL Schema: 2 Select Generate Database Schema from the
Repository menu to generate the schema. When the
dialog box appears, click OK. (Refer to the Operation
Manual or online help system for details of the SQL
Schema Generation dialog box.) If errors are found, they
along with the generated schema will be displayed.

View the Schema: 3 Maximize the SQL generation dialog box.

Working with the Repository Functions

4 Click the Schema button to display the generated schema.
See Figure 17-12. If Visible Analyst does not have the
information to generate the schema, a list of errors is
displayed; but no Select box is present. Click the Errors
button to view any errors. (If too many errors are
generated, the Schema button is not displayed.)

Figure 17-12 Generated SQL Schema

Shell Code Generation
The Corporate and Zachman Editions can generate C and COBOL shell code. The code that is
generated encompasses the sequence of functions or paragraphs that make up a program,
including global definitions, descriptive comments, function call/PERFORM statements, and
passed parameters. Information entered in text fields in the repository entry for a program
item or a structure chart module produces comments that describe these items within the
generated code. Also, actual source code can be entered in the module description field of a
module or macro, and this code is placed in-line with the function calls or PERFORM
statements that are generated by invocations. Couples or ITRs used with invocation lines
generate parameters for C code. There is also an option to customize the code to be

154

Working with the Repository Functions

generated. (See the online help for other generation options supported by Visible Analyst,
such as AS/400 DDS, Visual Basic, PowerBuilder, etc.)

XML Generation
Visible Analyst can generate the XML Schema based on the W3C standard by selecting the
Tools | Export | XML Schema (XSD) menu option. The XML file is generated for the entities
and (optionally) classes developed in the project. The XML file is written to the Visible
Analyst TRANS folder.

XML DCD code can also be generated based on the data models. This is similar to SQL
schema generation. XML can be selected as the generation option when you select SQL
Dialect from the Options menu. The procedure is similar to the SQL DDL generation. See
the Operation Manual or the online help for more information.

Repository Reports
Now you practice generating a report on the data contained in the repository. This is a basic
report containing a detailed listing of all entries contained in the repository. For detailed
information about Reports and Report Queries (Custom Reports), see the Operation Manual
or the online help system.

First set the font for the report you want to generate.

Set the Report Font: 1 From the Options menu select Text Settings.

 2 Under Text Type, select Report Body.

 3 Select a typeface and point size, and click OK.

Set the Report Criteria: 4 Select Reports from the Repository menu. The
Repository Reports dialog box appears (see Figure
17-13).

Working with the Repository Functions

Figure 17-13 Repository Reports Dialog Box

 5 Under Project Scope, select Entire Repository.

6 Under Report Type, select Detailed Listing.

7 Under Included Types, select All.

8 Under Report Scope, Entire Project is selected.

9 In the box labeled Sort Sequence, select Alphabetical.
This determines the entry order in your report printout.

10 In the box labeled Entry Characteristics, select All
Entries.

11 In the box entitled Entries Per Page, select Multiple
Entries Per Page. You can select Single Entry Per Page to
reorder the pages of your report once they have been
printed.

Run the Report: 12 Click Print; the information is sent to the printer. Select
Preview to view the report first.

	Lesson
	Entity Relationship Diagrams
	OVERVIEW
	Definitions
	Figure 7-1 Entity Relationship Diagramming Symbols
	Relationship Cardinality

	THE EVOLUTION OF DATA MODELING
	BUSINESS RULES NOTATION
	Table 7-1: Using Relationship Symbols for Data-Oriented, Business-Driven Business Rules
	Table 7-2: Using Relationship Symbols for Process-Oriented, IT-Driven Business Rules
	Cluster Analysis and Cluster Report
	Milestone Clusters
	Moving Clusters into a Different Functional Area
	Data Model Display Orientation
	Potential Export Capability to Microsoft Project

	BUSINESS NORMALIZATION
	DEVELOPING YOUR DATA MODEL
	Adding Entities to a View
	Figure 7-2 New Entities
	Changing a Symbol Type

	Figure 7-3 Changed Entity Type
	Adding Relationship Lines
	Note

	Figure 7-4 Label Relationship Dialog Box
	Analyzing the Diagram

	Figure 7-5 Normalized Diagram
	Automatically Generating a View of Your Data Model
	Figure 7-6 Process View Dialog Box
	Figure 7-7 The Generated Process View

	Lesson
	Data Flow Diagrams
	OVERVIEW
	Figure 8-1 A Process Numbering Scheme
	Figure 8-2 Data Flow Diagramming Symbols

	CREATING AND POPULATING A TOP-LEVEL DIAGRAM
	NESTING A PROCESS
	Figure 8-3 Child Diagram With Dragged-Down Flows

	CREATING A NEW DIAGRAM
	Figure 8-5 Exploded Diagram with Flows
	Adding Processes to a Child Diagram
	Attaching Data Flows to Symbols
	Figure 8-6 Child Diagram with Processes and Flows

	Splitting Data Flows
	Figure 8-7 Splitting a Data Flow
	Figure 8-8 Split Data Flow Dialog Box

	ANALYZING FOR BALANCE AND COMPLETENESS
	Note
	Fixing the Errors
	Note
	Figure 8-9 The Completed Diagram

	GENERATING A PROCESS DECOMPOSITION MODEL
	Note
	Figure 8-10 Process Decomposition Diagram

	Lesson
	Working with Repository Functions
	OVERVIEW
	Note
	Figure 17-1 Blank Repository Dialog Box, Page One

	REPOSITORY BASICS
	Repository Control Buttons
	Figure 17-2 Repository Dialog Box Control Buttons

	Editing Keys
	Field Types
	Label Field
	Entry Type Field
	Note
	Description Field
	Alias Field
	Attributes Field
	Values & Meanings Field
	Discriminator Values & Meanings Field
	Notes Field
	Location Field
	Other Pages and Fields

	Object Repository
	Attributes
	Attached Entities/Classes
	Relations
	Long Name
	Class Characteristics
	Figure 17-3 Class Attributes
	Figure 17-4 Class Methods
	Note

	Arguments for Methods
	Friends

	Navigation Capabilities
	Note

	Search Capabilities
	Figure 17-5 Repository Search Dialog Box
	Setting the Search Criteria
	Figure 17-6 Setting Repository Search Criteria
	Using Search to Add Items to a Field
	Figure 17-7 Add Information with Search

	ADVANCED REPOSITORY FEATURES
	Adding Information to the Repository
	Figure 17-8 Student Driver Attribute Information

	Key Analysis and Key Synchronization
	Figure 17-9 Key Analysis Error Messages
	Figure 17-10 Key Synchronization Messages

	View Objects
	Note

	Generate Database Schema
	Figure 17-12 Generated SQL Schema

	Shell Code Generation
	XML Generation
	Repository Reports
	Figure 17-13 Repository Reports Dialog Box

